7-cubic honeycomb | |
---|---|
(no image) | |
Type | Regular 7-space honeycomb |
Family | Hypercube honeycomb |
Schläfli symbol | {4,3,3,3,3,3,4} {4,3,3,3,3,31,1} {∞}7 |
Coxeter-Dynkin diagrams | |
7-face type | {4,3,3,3,3,3} |
6-face type | {4,3,3,3,3} |
5-face type | {4,3,3,3} |
4-face type | {4,3,3} |
Cell type | {4,3} |
Face type | {4} |
Face figure | {4,3} (octahedron) |
Edge figure | 8 {4,3,3} (16-cell) |
Vertex figure | 128 {4,3,3,3,3,3} (heptacross) |
Coxeter group | [4,3,3,3,3,3,4] |
Dual | self-dual |
Properties | vertex-transitive, edge-transitive, face-transitive, cell-transitive |
The 7-cubic honeycomb or hepteractic honeycomb is the only regular space-filling tessellation (or honeycomb) in Euclidean 7-space.
It is analogous to the square tiling of the plane and to the cubic honeycomb of 3-space.
There are many different Wythoff constructions of this honeycomb. The most symmetric form is regular, with Schläfli symbol {4,35,4}. Another form has two alternating 7-cube facets (like a checkerboard) with Schläfli symbol {4,34,31,1}. The lowest symmetry Wythoff construction has 128 types of facets around each vertex and a prismatic product Schläfli symbol {∞}7.